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Abstract-In this paper we present an elastic-plastic analysis of the small-scale yielding crack-tip
fidds for pressure-sensitive materials. Mode I loading and plane-strain conditions are assumed. The
\idd niterion is chosen to be a linear combination of the effective stress and the hydrostatic stress.
"For power-law hardening materials. our elastic-plastic finite element analysis shows that HRR­
type crack-tipe fields are obtained not only for Il :>; Il,,,,,, but also for a range of 11> Ilhm' Here Illom
is referred to as the limit value of a pressure sensitivity parameter 11 in li and Pan [J. Appl. Mt'ch.
57.40-41/ (l91/(}l). When clastic~perfectly plastic behavior is considered. the finite element results
show that elastic sectors e~ist near the crack tip. The sizes of the elastic sectors vary with Il. Plastic
wnes are also given for ditferent values of the pressure sensitivity parameter Il and the hardening
e~p"nent n. The parameter Il has a significant effect on the plastic zone sizes and shapes. The
contrilluti"n (If the hydrostatic stress in the yield criterion causes the plastic zone boundary in front
or the crack tip to e~teml much farther than that in an incompressible materi•• 1.

I. INTRODUCTION

Allhough Ihe general Iheorelical framework of the constitutive laws for pressure-sensilive
malerials such as rocks, concrele, soils, etc., arc well laid out in the literature (for example,
see Drucker and Prager. 1952; Wu, 1966; Rudnicki and Rice, 1975; Spitzig and Richmond,
1979; and Needleman and Rice, 1(78), the consequences of pressure-sensitive yielding and
plastic dilalalion, as far as crack-tip mechanics :tre concerned, have remained relatively
uncxplored. This becomes increasingly necessary due to the fact that some new materials,
for example, loughened structural polymers and ceramics, show great potential in modern
structural applications. In this class of materials, appreciable volumetric plastic defor­
malions have been reported in the past. It is believed that for this type of materials, the
pressure-sensitive yielding arises in part from basic flow mechanism in polymers, micro­
cracking and phase transformation in some ceramics, and in part from cavitation and craze
formation in polymers.

So motivated, Li and Pan (1990a) recently investigated the asymptotic crack-tip stress
and strain fields for pressure-sensitive dilatant materials. They assumed a simple hydrostatic
stress-dependent yielding criterion (Drucker and Prager, 1952). The corresponding crack­
tip stress and strain fields have been obtained for a limited range of pressure sensitivity
parameter IL under plane-strain conditions. But many questions remain to be answered. For
instance, Li anJ Pan (1990a) identified a limit value, jLlimn, of the pressure sensitivity
para meIer IL for each hardening exponent, n, such that for jL ~ Plim, the numerical method
for obtaining the H RR-type crack-tip fields starts diverging. For the perfectly plastic case
(II - JJ), ILlim is )3/2. The existence of jLlim might be due to the assumption of the constitutive
law under plane-strain constraint conditions. To address the above and many other issues
regarding the stress and strain fields near a crack tip, it is necessary to carry out a full-field
clastic-plastic analysis. In this report, we concentrate on the mode I crack-tip fields under
plane-strain conditions. The results on the corresponding plane-stress crack-tip fields are
reported in Li and Pan (1990b) and Ben Aoun and Pan (1991).

2. MATERIAL IDEALIZATION

Throughout this investigation, we adopt a simple pressure-sensitive yield criterion that
contains two stress invariants, the effective stress (J. and the hydrostatic stress (Jm, in such
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a way that

where
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(I)

(2)

and l/!(aj) represents the current yield surface in the stress space. The material constant J1.

measures the pressure sensitivity of yielding. The characteristic yield strength Q can be
taken to depend upon the plastic work ~vP. Further information on the pressure-sensitive
criterion can be found in Drucker and Prager (1952) ; its applications in metals. polymers
and ceramics are discussed in Drucker (1973), Spitzig and Richmond (1979), and Reyes­
Morel and Chen (1988).

Using Li and Pan's notation. we can introduce the generalized effective stress ao, as
follows:

(3)

in which a, is the conventional tensile effective stress. Then, the yield criterion [eqn (I)] can
be restated as

(4)

The outward normal tensor S" of the yield surface in the stress space is

(5)

The pressure-sensitivity parameter, JL. of the initial yield surface can be obtained from the
compressive yield strength a,. and the tensile yield strength (1, (Needleman and Rice, 197~):

(6)

As the strength dillcrential between compression and tension increases, an extreme case is
reached at a, = if) in compression, and J1. becomes Ji When J1. is larger than fl, deter­
mination of J1. based on eqn (6) is no longer appropriate under the current assumed yielding
criterion of eqn (I). A method for determining J1. for toughened ceramics is devised by Chen
and Reyes-Morel (1986).

In this study, the plastic behaviour of the pressure-sensitive materials is assumed to
obey the fictitious power-law stress-strain relation when ag, is larger than ao:

(7)

where e~, represents the generalized effective plastic strain. Since we adopt the normality
of plastic flow. the generalized effective plastic strain rate equals the tensile effective plastic
strain rate. The tensile effective plastic strain, which provides a measure of the plastic
distortion, is obtained from integration over the deformation history based on the tensile
effective plastic strain rate defined as i~ = «2/3kf,ef,) 12. Here efj represents the deviatoric
plastic strain rate. The corresponding deformation plasticity version of the constitutive law
can be found in Li and Pan p 990a). For the elastic-perfectly plastic case, ao, takes the
constant value of ao, the yield stress in uniaxial tension. In eqn (7), eo is the yield strain in
uniaxial tension. Within the context of the small-strain flow theory of plasticity, the total
strain rate tensor in the plastic range can be decomposed into an elastic and a plastic part:
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(8)

The elastic strain rate tensor sfj is related to the stress rate tensor aij through a constant.
isotropic. positive-definite elasticity tensor CiJlc1 as

(9)

The plastic strain rate tensor s~ is normal to the yield surface and the flow rule takes the
form

(10)

where J. > 0 under plastic loading conditions.
By using eqns (I )-(10) the constitutive law for a material currently experiencing elastic­

plastic deformation can be obtained as

(II)

In the above, H' = dl1g,/ds:.. can be obtained from eqn (7) for the power-law hardening
materials and H' =0 for elastic-perfectly plastic materials. The plane-strain constraints
are imposed through the requirement that'; Ji == O. For simplicity, Jl is assumed to be constant
in the entire deformation history in this investigation.

3. FINITE ELEMENT ANALYSIS

3.1. Computational model
We consider a crack in an elastic-plastic solid with the reference coordinate systems

depicted in Fig. I; the Cartesian coordinates XI and X2 and the polar coordinates, and 0
are centered at the tip. We consider the so-called small-scale yielding problem where the
plastic zone near the tip is small compured to the relevant length parameters such as the
crack length under remote loading. The small-scale yielding problem was modeled by
considering the crack in the circular domain of radius 'oJ' To take advantage of the mode I
symmetry of the problem, only the upper hulf of the circular domain was considered and
discretized using eight-node serendipity elements. In the immediate crack-tip region, we
used a ring of 20 wedge-shaped elements of size 'I' The crack-tip elements with collapsed
nodes were equally distributed from 0 to n: and surrounded by 24 semi-circular strips of
elements generated by a logarithmic scale in the, direction. The entire model consists of a
total of 500 isoparametric elements, and ';/'. ~ 10- 5 is used in the calculations.

lei
crack symmetry plane

Fig. I. Problem definition and the coordinate conventions.
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The displacement due to the leading singular term of the linear elastic asymptotic
solution of the crack-tip field.

( 12)

is specified as the boundary condition at the outermost boundary r = r" of the domain.
Here, G represents the shear modulus. \' represents the Poisson ratio, h., denotes the mode
I stress intensity factor of the far-field, and li,(O, \') are the dimensionless displacement
functions associated with the elastic singularity and depend only on the orientation II for a
given elastic material. The loading is applied through the stress intensity faclLH. }';,. whidl
can be viewed as an amplitude factor in eqn (12), The remote load intensity can also b..:
expressed in terms of the well-known J integral (Rice. 19(8) as

I-I'~
.1= EA.';.

where E is Young's modulus, to facilitate later discussions.

:1.2. i'"l/lIIerica! procedure
Within the context of the small-strain approach, an increnH:ntal plasticity theory

was employed with the pressure-sensitive yield criterion and the associated flow rule. A
displacement-oased finite element method with an iterative procedure oased on a modified
Newton· Raphson method was used in the analysis. The finite element equations wen:
lkrived from the principk of virtual work. At time 1+ /'1./. this takes the fllml

( 1-+)

where IJ",,(I + /'1.1) represents the Cauchy stress tensor, which satisfies the equilibrium l'On­
ditions at time 1+/'1./, and T,(/+/'I./) is the imposed traction vector on the boundary (l/I of
domain A. In addition, (jll, represents the virtual displacement field that vanishes on the
part of the boundary where the displacement is specified, and &'1 is the associated small­
strain tensor. Here, time 1 is used as a convenient variabh; to represent Jilfcrcnt loading
levels. Linearizing eqn (14) with respect to the equilibrium configuration at time 1 and
introducing the finite dement approximation, we obtain the following incremental equi­
librium equations in matrix notation:

K r/'l.U = F(I + /'1.1) - P(/), ( 15)

where /'I.U = U{t + L\t) - U(/) is the vector of incremental displacements at the nodal points.
Kr = r,R'nll dA is the tangent stiffness matrix corresponding to the configuration at time
t (II is the strain displacement matrix and D the material constitutive matrix of the elastic
plastic material), F(t+/'I.t) is the vector of the applied external loads at time t+t\I. and
P(/) = J~Rl1(t) dA is the equivalent force vector of the clement stresses at time I.

The loading is applied through the mode I stress intensity factor. K" which enters the
far-field displacement boundary conditions [eqn (11)] as an amplification factor. An iterative
Newton-Raphson procedure is employed to solve the incremental equilibriulll equations
[eqn (15)] for each load increment, such that for the kth equilibrium iteration at time t+ !'J.I.
the Euclidean norm

( 16)

satisfIes
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(17)

where TOL is a small preset tolerance. It is important that the stress evaluation. which can
be written as

( 18)

is performed by integrating from the values of the last accepted equilibrium state to the
current state of iteration k. so that the final results are not affected by errors introduced
during intermediate iterations (Bathe and Cimento. 1980). The incremental processes are
continued until a steady stress state at the crack tip is observed. At all times the maximum
extent of the plastic zone around the crack tip is smaller than 1/100 ofro to preserve small­
scale yielding conditions (Dong and Pan. 1990a.b). For the results reported here. v is taken
as 0.3. and the ratio E/(Jo as 500.

4. ASYMPTOTIC CRACK-TIP FIElDS

4.1. POlI'er-lall' harclenin.ll solutions
For power-law hardening Mises materials. the asymptotic crack-tip stress and strain

fields possess the well-known H RR singularity (Hutchinson. 1968a.b; Rice. 1968; and Rice
and Rosengren. 1968). By the same token. Li and Pan (1990a.b) show that the asymptotic
crack-tip stress. strain. and displacement fields in power-law hardening pressure-sensitive
materials can be written as:

( 19)

(20)

(21)

In the above, the dimensionless function I and the dimensionless angular functions ai}' e'l'
and Ii, depend on the strain hardening exponent, n, the pressure sensitivity factor, p., and
the conditions of plane-strain or plane-stn:ss. These angular functions are normalized by
setting the maximum value of the dimensionless generalized effective stress age equal to
unity. The asymptotic solutions were obtained by Li and Pan (1990a) for a limited range
of p. for each n under plane-strain conditions. In order to investigate the reason for the
existence of P.hm' we have carried out full-field finite element computations. The numerical
results arc presented in the following.

For the case of n = 3, the crack-tip stress fields at r/rp ~ 10 - J as functions of 0 for
p. = 0, 0.1 and 0.2 are shown in Fig. 2. Here rp represents the extent of the plastic zone from
the crack tip at 0 =O. At r/fp ~ 10 - J, steady state asymptotic solutions were obtained in
our computations for hardening materials. All the stress components are normalized by
(Jo[J/(:X(Jo£or)]I!(I .. n}. For p. =O. the stress field shown in Fig. 2a is in agreement with the
corresponding HRR field of Hutchinson (1968a,b) and Rice and Rosengren (1968). As
shown in Fig. 2a and b. where JI increases frQm 0 to 0.1. the difference of (Joo and (Jrr ahead
of the crack tip decreases and nearly vanishes. This means that the stress state ahead of the
crack tip approaches pure hydrostatic tension as p. increases. This trend is the same as that
of the asymptotic analysis of Li and Pan (1990a).
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It should be noted that the limit value Ilion/or 11= J is suprlN:d to he O.ot) al:l:ording
to the asymptotic analysis of Li and Pan (1990a). Figure 2c shows the results for P = 0.2.
which are more than twice as much as Pin" for II = 3. The stress state ahead of the l:fack tip
for P = 0.2 seems to stay in nearly pure hydrostatic tension. However. the magnitudes of
the normalized stresses. (Joo and (J". ahead of the tip arc less than those of p = 0.1. More
signific.mtly, the stress field for 11= 0.2 is still of HRR-type based on the numerical results
of the radial dependence of the stresses, whereas Li and Pan (1990a) wefe unable to lind
any solutions for 11 ~ llhrn'

The same trend is also observed for the case of 11 = 10. Figure 4 shows the angular
functions of the normalized stresses for Il = 0, 0.2 and 0.4. The angular functions of the
normalized stresses in Fig. 4a and b for Il = a and 0.2 agree well with the corresponding
asymptotic solutions of Hutchinson (1968a,b), Rice and Rosengren (1968), and Li and Pan
(1990a). Note that Illim for n = 10 is 0.344. Here we still can find the HRR-type crack·tip
field as shown in Fig. 4c for Il = 0.4.

The corresponding plastic zones normalized by (I - v=)(J~/1E are plotted in Figs 3 and
5 for n = 3 and n = 10, respectively. These figures show that for both n = 3 and 11 = 10 the
normalized plastic zones expand and shift to the front of the tip as II increases. The trend
of the plastic zone shape change with the increase of JI differs from that of the generalized
effective stress contours of the asymptotic analysis of Li and Pan (1990a).
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Fig. 3. l'hlstie zones normalized by (I - v~)t1I;IJE for" = 3: (a) JI = 0. (b) Jl =0.1, (e) J1 =0.2.

4.2. Per/ectly plastic solutions
As the hardening exponent II approaches 00. the perfectly plastic limit is realized. It

seems that simple extrapolations from the low hardening limit of the power-law solutions
may not be entirely appropriate under certain circumstances. Some relevant discussions
can be found in Gao (1980), Nemat-Nasser and Obata (1984) and Dong and Pan (1990a,b)
for Mises materials. Nevertheless. some fundamental effects of the pressure-sensitive yield­
ing on the crack-tip fields can still be brought to light with the assumption that the material
surrounding the crack tip is fully yielded at all angles. In doing so. Li and Pan (1990a)
constructed a slip-line field for Jl < Jlhm' The resulting slip-line grid is formed by two non­
orthogonal families of characteristic lines. However. they failed to identify the solution for
Jl = Jlhm' In the following, we will present a slip-line field for the limit case in order to shed
some light on the physical interpretations of Jlhm for perfectly plastic materials.

4.2.1. Rigid perfectly plastic solution for Jl = Jllim' The asymptotic form of the equilibrium
equations with respect to the polar coordinates (Fig. I) can be written as:

(22)

(23)

SAS 28:9-0
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The pressure-sensitive yield criterion can be rewritten as:

(24)

where

(25)

It is convenient to rewrite the yield criterion. eqn (24), in terms of the normal stress (f and
the shear stress r in the Mohr plane (Fig. 6b) :

r = C-(f tan ¢. (26)

[n eqn (26). we have introduced another parameter c:
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Fig. S. Plastic zones nonnalized by (I - vl)f1~/JE for n == 10: (a) 11= O. (b) Jl .. 0.2. (c) Jl .. 0.4.

(27)

Evidently. eqn (26) is in the same form of the well-known Coulomb yield criterion, and c
and rP arc referred to as the cohesion and the angle of internal friction, respectively.

By means ofcombining eqns (22)-(24). it becomes apparent that there exist two types
of plastic crack-tip sectors [see Rice (1982) for the general framework of asymptotic crack­
tip fields for perfectly plastic materials]. One is the constant stress sector, and the other is
the curved fan sector. Within the constant stress sector, the characteristic grid is generated
by two non-orthogonal families of parallel lines, namely Ct lines and P lines. Within the
curved fan sector, the grid is generated by one family of radial lines and another family of
spiral curves. In both cases. the two families ofcharacteristics intersect each other at 7[/2 + 4J,
as shown in Fig. 7. On the plane along the characteristic lines, the normal stress u and the
shear stress f satisfy eqn (26).

If J.l = O. the yield surface is described by two horizontal lines (4J = 0) intersecting the
r-axis at T::::: ±u0:;3 (Fig. 6a). and incompressible yielding results. The two families of the
characteristics are 7[/2 apart (Figs 7 and 8a)..-and become the slip lines of the conventional
slip-line theory for incompressible materials. If J.l ::::: fi12. the two inclined lines describing
the yield surface become one single vertical line (4J = 7[/2) intersecting the u-axis at 2u/3
(Fig. 6c). and pure normal stress-dependent yielding results. The two families of the stress
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-----+-+---+.;..-.:~. (J
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(c) J.1=.J3/2

Fig. 6. Yield surf;u:es displayed in the Mohr plane: (a) II = O. (0) 0 < /1 < J3/2, (c) JI = fi12.

characteristics converge to one. The S:'lmc conclusion can also be reached by examining the
go~erning equations using the well-known determinant method. As J.l changes from 0 to
J3/2. the nature of the governing e9-uations changes from hyperbolic to parabolic every­
where around the crack tip at J.l = ";3/2. The assembly of the characteristics for the crack~

tip stress field is shown in Fig. 8c. and the stresses are of the following form;

for 0 ~ 0 < n:i2 :

(1" (1/11/ ,

-- = ~- = "
(1 () (J () .

fJ

.l:l

Fig. 7. Definition of characteristic lines with respect to the major and minor principal stresses (1/

and (1/1 in the Xl«~ plane.

(28)

(29)
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(b) JJ. • 0.8

(c) JJ. • JJ.Um

Fig. 8. Crack-lip chamcleristic fidds for dilfcrenl vulul.'S ofp: (a) p 'OS O. (b) p ... 0.8. (c) p ... P,... ...

j3/2.

and for n/2 < 0 ~ 7t:

a" = W+cos 20)
au

aoo
-= }(l-cos20)
ao

arlJ = -1 sin 29.
ao
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(30)

(31)

(32)

For comparison purposes, the slip--line fields for Jl =0 and Jl = 0.8 are also shown in Fig.
8a and b, respectively. The corresponding angular distributions of the stresses normalized
by ao are shown in Fig. 9. Note that the radial stress component a,. becomes discontinuous
along the boundary of the two sectors at (J = 90" in Fig. 9c for Jl =: j3/2. If we closely
examine these two sectors, we find that they are actually two constant stress sectors. For
o~ 0 < n/2, the stresses are: a...~ = ayy = a:: = 2ao/3 and a .., = O. This sector is in hydro­
static tension. It is actually a degenerated fan sector which becomes a constant stress
sector of hydrostatic tension. For n/2 < 0 ~ 7t, the stresses are: a.... = 2ao/3 and
ayy = a:: = a.... = O. This sector is in uniaxi~1 tension in the crack line direction. The plane­
strain conditions is met due to the plastic dilatation in the out-of-plane direction from the
normality ftow based on the pressure-dependent yield condition. Due to the plane-strain
constraints, the plastic strain must be zero in the front. Therefore the material must be rigid
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in from of the crack tip. The plastic deformation occurs in uniaxial stretching in the sectors
above and below the crack faces.

4.2.2. FEM results/or elastic-perfectly pillstic mataials. Figure 10 shows the normalized
stresses as functions of 0 from finite element computations at rlr" ~ 10- 2 for It = 0,0.4 and
0.8 for elastic-perfectly plastic materials. At rlr" ~ 10 - 2, we obtained steady state asymp­
totic solutions in our computations for perfectly plastic materials. For j.t = 0, the well­
known Prandtl field is recovered (Fig. lOa). Figure lOb and c shows the angular stress
distributions for JI = 0.4 and 0.8 respectively. All the computational results for II > 0 show
that there exists an elastic sector between the upper crack surface and the neighboring
partial constant stress sector. The resulting structure of the crack-tip stress field is depicted
in Fig. II. Detailed discussions of the elastic-perfectly plastic crack-tip fields will be reported
in Kim and Pan (1991). In contrast, for power-law hardening materials, fully yielded crack­
tip fields surrounding the tip are always obtained. Due to the existence of the elastic sector.
the magnitudes of the opening and radial stresses ahead of the tip are slightly less than their
counterparts in the rigid perfec~ly plastic solutions (Fig. 9).

The corresponding plastic zones normalized by (1- v2 )C'fo/JE for II = O. 0.4 and 0.8
are shown in Fig. 12. As shown in the figure. when j.t increases. the sizes and shapes of the
plastic zones change drastically. As shown in Fig. 12c for JI = 0.8. the plastic zone shape
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resembles the one for Mises materials under plane-stress conditions (for example, see Dong
and Pan, I99Ob). This indicates that pressure·sensitive yielding relieves the large hydrostatic
tension ahead of the tip imposed by the plane-strain constraint conditions. As J.l increases
further from 0.8, our finite element computations indicate that the angular span of the
elastic sector behind the tip expands and the total angular span of the plastic sectors ahead
of the tip decreases. As J.l approaches ./3/2, the crack-tip field becomes elastic at all angles.

Constant Stress Sector

'" Curved Fan Sector

Elasttc Sector

Crock

Fig. II. Assembly of the crack-lip sectors for elastic-perfectly plastic materials with pressure­
sensitive yielding.



Fig. 12. Plastic zones nurmalized by (1 - I'! )ff,;,IJH for dasti", p",rli;ctly plastic materi:lls: (a) 11 "" o.
(bI""" 0.4, (c) 11 "" O.1l.

We cannot lind any steady asymptotic solutions for It > J3/2 for the clastic-perfectly
plastic cases. It should be noted that the trend of plastic zone size and shape reported here
is completely different from that of the generalized etfective stress contours for large n
shown in Li and Pan (1990a).

5. DISCUSSION

Among other things. one question constantly posed throughout this investigation is
whether the limit value. 111m,. of the pressure sensitivity parameter J1. indeed exists. as
introduced by Li and Pan (1990a). Li and Pan (1990a) show that J1."m increases with the
power-law hardening exponent. fl. and tends to ,/3/2 as fl approaches 00. This set of 11"m
apparently stems from the plane-strain constraints and the subsequent formulations in their
dominant singularity analysis. As for the easel' of perfectly plastic materials, the resulting
equations are either hyperbolic (for Jl < "/3/2) or parabolic (for J1. = ",/3/2), For the
parabolic case. plastic yielding only depends on the stress component (J normal to the
characteristic lines (Figs 6c and 8c). Once material elasticity is introduced. the cmck-tip
fields for perfectly plastic materials are no longer fully plastic at all angles for It > O. The
size of the elastic sector increases with the pressure sensitivity parameter II. It seems that
as J1. approaches ./3/2. the plastic sectors degenerate to a thin line ahead of the tip at 0 = 0
and a completely elastic field emerges. No steady asymptotic solutions can be found for
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P > " 3 2. This appears to be consistent with the findings discussed in Dong and Pan
(1990a.b). that a discontinuity in (J,,, as envisioned in the rigid perfect plasticity solutions,
is actually replaced by an elastic region in the same neighborhood. Since no steady solutions
can be found for P beyond j3/2. we may conclude that the limit value of P for the elastic­
perfectlyplastic case is the same as the one identified for the rigid perfectly plastic case, i.e..

- ~.,

Phm - " -' _.
If any hardening behavior is introduced, a fully yielded HRR field is always obtained

not only for JI < Phm' but also for a range of P ~ Phm' This signifies that the set of Phm
suggested by Li and Pan (1990a) is not the actual Phm, if indeed one exists. It seems that
the real limit values would be larger than those suggested by Li and Pan (1990a), but
quantitative arguments on this issue still cannot be made without further detailed inves­
tigation.

The dramatic change in both size and shape of the plastic zones with increasing JI are
shown in Figs 3, 5 and 12. As JI increases, the plastic deformation near the tip shifts to the
front. This interesting feature has also been noticed in recent experiments on toughened
polymer composites, where cavitation and crazing result in apparent pressure-sensitive
yielding and plastic dilatation (Sue and Vee, 1989).
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